|
|
источник статьи: Большая Советская Энциклопедия |
Фурье метод, метод решения задач математической физики, основанный на разделении переменных. Предложен для решения задач теории теплопроводности Ж. Фурье и в полной общности сформулирован М. В. Остроградским в 1828. Решение уравнения, удовлетворяющее заданным начальным однородным и краевым условиям, ищется по Ф. м. как суперпозиция решений, удовлетворяющих краевым условиям и представимых в виде произведения функции от пространственных переменных на функцию от времени. Нахождение таких решений связано с разысканием собственных функций и собственных значений некоторых дифференциальных операторов и последующим разложением функций начальных условий по найденным собственным функциям. В частности, разл
ожение функций в ряды и интегралы Фурье (см. Фурье ряд, Фурье интеграл) связано с применением Ф. м. для изучения задач о колебании струны и о теплопроводности стержня. Например, изучение малых колебаний струны длины l, имеющей закрепленные концы, сводиться к решению уравнения
Выбирая соответствующим образом коэффициенты An и Bn, можно добиться того, что функция будет решением поставленной задачи. Ряд важных проблем, связанных с применением Ф. м., был решен В. А. Стекловым.
|